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Abstract. It is shown for gaseous systems that the internal energy function can be uniquely 
constructed solely on the basis of a set of properties of the final temperature reached in the 
equilibration process due to thermal contact between two gaseous systems with a fixed 
density. A formulation of a theory of measurement is used, in which an additive quantity, 
such as mass or length, can be defined as a unique numerical representation of a certain 
algebraic structure equipped with two operations addition (+) and qualitative comparison 
(an order relation G ) .  

1. Introduction 

This paper is concerned with such problems as whether the concept of internal energy 
can be characterised solely by the conservation law in thermal interaction of two 
thermodynamic systems without any use of the concept of mechanical energy, and if it is 
possible, what properties of the thermal interaction are essential to the construction of 
the internal energy function. These problems originate in Giles’ axiomatic thermo- 
dynamics (Giles 1964, cf Landsberg 1970), in which he derived a thermodynamic 
structure composed of an entropy function and a set of conserved quantities from an 
axiom system representing some characteristics of the thermodynamic process. His 
axioms are, however, quite general and abstract, and it is difficult to designate the 
internal energy from the set of conserved quantities, whose number is infinite except in 
a trivial case. His construction of an energy function (Giles 1964 p 105) seems to be 
physically vague, because he persists in a standpoint of a ‘primitive observer’ and does 
not use any parameter to specify the state of a thermodynamic system. This paper does 
not take so primitive a standpoint. We focus attention on a gaseous system with a fixed 
density whose states are specified by two parameters, absolute temperature and mole 
number, and aim at constructing the internal energy function solely on the basis of some 
properties of the final temperature reached in the equilibration process due to thermal 
contact between two such gaseous systems. 

The essence of the method used here is a formulation of a theory of measurement 
which can typically be illustrated in the case of the measurement of mass by a balance. 
The balance is used only to compare the masses of two objects. Let us write a < b if the 
object b is heavier than the object a, a - b if a is balanced with b, a s b if a - b or a < b 
and a + b when we put a and b together on one side of a balance. Then experience 
suggests the following: (i) a s b w a + c s b + c, and (ii) for any two objects a and b, we 
have b < na for sufficiently large positive integers n. Fact (ii) corresponds to Archi- 
medes’ axiom of real numbers (SteEkin 1963 p 15), and such a structure of 4 and + 
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with conditions (i) and (ii) leads to a well known mathematical proposition that there 
exists uniquely up to a positive multiplicative constant a real function M such that (1) 
a 6 b e M ( a )  c M ( b ) ,  (2) M ( a  + b )  = M ( a )  + M ( b ) ,  and (3) M ( a )  + 0. Thus the 
numerical scale for mass is uniquely determined from the qualitative comparison if an 
object is specified as the unit of the scale. The idea of constructing an additive 
numerical scale on the basis of qualitative relations or an algebraic structure with the 
operations + and 6 was discussed long ago byvon Helmholtz (1930) and Weyl(l949, cf 
Giles 1964 p 3) from a philosophical viewpoint concerning a general process of 
measurement, and the idea has been developed as a ‘theory of measurement’ in relation 
mainly to psychological or economic problems. Giles’ thermodynamics is also based on 
the idea. There are comprehensive reviews by Krantz et a1 (1971) and by Pfanzagl 
(197 1). 

In Q 3 we list some physically acceptable properties of a function which connects two 
initial states to the final temperature produced by them through thermal contact, and 
then construct on the basis of the properties a structure equipped with an addition + 
and an ordering d which can be interpreted respectively as the union of two systems 
through thermal contact and mixing and as a qualitative comparison of internal energy. 
Finally, the structure is shown to satisfy conditions (i) and (ii) with some modifications, 
and we necessarily obtain a unique additive numerical scale for internal energy in the 
same way as in the case of mass. The numerical scale has the following properties: (a) It 
satisfies a conservation law (the additivity, in this case, means a conservation law), and 
(b) it decreases to zero as the absolute temperature approaches zero. In § 2 we set up a 
mathematical theory of the structure of 6 and + in a form suitable for application to 
our problem. 

2. Additive ordered structure 

Let 9’ be a non-empty set associated with an operation + and a relation <. We define 
an additive ordered structure (Y, + , i ) by the following four axioms (in this section 
a ,  b, c, . , , indicate the elements in 9’): 

Axiom Al .  ,’Y is an additive semigroup with the operation +, that is (i) a + b E Y, (ii) 
a + b = b + a ,  and (iii) ( a  + b ) + c  = a  + ( b  + c ) .  

Axiom A2. The relation 6 is a total quasi-order in 9, that is (i) for any a ,  b E Y either 
a 6 b or b 6 a holds, (ii) a < a,  and (iii) a < b and b 6 c j a 6 c. 

Axiom A3. a i b + a  + c i b +c .  

Definition2.1. (i) a - b e a a b  and b < a .  (ii) a < b e a < b  and a+b,  where a 4 b  
means that a - b is not true. (iii) 6 ={a E 9; a + c - c for all c E 9’). We call the 
elements in 8 null elements of 9’. 

Axiom A4. If a & 8 and b E Y, then there exists a positive integer N such that b < nu for 
all integers n > N. 

Theorem 2.1. If (9, +, 6 ) is an additive ordered structure, then there exists a mapping 
M : Y + R  (the real line), unique up to a positive multiplicative constant, with the 
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following properties: 

B1. M ( a  + b )  = M ( a )  + M ( b )  (2.1) 

BZ. a s  b J M ( a ) s M ( b )  (2.2) 

B3. U E e e M ( a )  = 0 (2.3) 

The proof of this theorem is given in the Appendix. 

Definition 2.2. We call the function A 4  defined in the above theorem a measure 
function of the structure (9, +, S ). The measure function M is faithful iff the converse 
of B2 (i.e. M ( a )  s M ( b )  J a 6 b )  holds. 

Remark. Since the quasi-order 6 is total, a S b (the negation of a S b )  is equivalent to 
b < a. Therefore the converse of B2 is equivalent to 

a < b + M ( a )  < M ( b ) ,  (2.4) 

which implies that the following condition (i) is necessary and sufficient and (ii) is 
sufficient for the measure function to be faithful: 

(i) Given a, b and c, if a < b then nu + c < nb for sufficiently large positive integers 
n. 

(ii) If a < b then there exists c @ 8 such that a + c 6 b. 

3. Internal energy of gaseous systems 

Consider a gaseous system of one component whose density is fixed. Its equilibrium 
states are specified by the absolute temperature T and the mole number n (or mass or 
volume; these are proportional to each other since the density is fixed). We define the 
set of states by 

(3.1) 

If two such systems of states (T,  n )  and (T’, n‘)  are put in thermal contact with each 
other, their temperatures will change and reach an equilibrium temperature 
f (  T, n ; T‘ ,  n‘). Then by removing the wall between them, we obtain a new equilibrium 
state (f(T, n ; T’, n’),  n + n’).  The explicit form of the temperature-composition 
function f(T, n ; TI, n‘) depends upon the kind of gas, but we can assume general 
properties as given below: 
0 1 .  f(T, n ;  T‘ ,  n’) =f(T’,  n’;  T, n )  
0 2 .  f(f(T, n ;  T’, n‘ ) ,  n + n ’ ;  TI’, n ” ) = f ( T ,  n; f (T’ ,  n’;  T”, n“), n ’ f n ” )  
03. f(T, n ;  T‘ ,  n’) is (i) continuous for each variable of T, n, TI, and n’, and (ii) strictly 
monotonic increasing for T(resp. T‘) with n, T‘(resp. T )  and n’ fixed. 
0 4 .  T < T’+ T < f (T ,  n ; T’n’) < T’ 
05. f (T ,  n ;  T’, n’)+m(T+m) 
0 6 .  f ( T ,  n ;  T‘ ,  a’ )+ T ( n  +a) 
07 .  f(T, n ;  T‘,  n’)+ T’(n  + 0 )  

On the other hand, these properties are considered to be due to the existence of a 
conserved quantity called internal energy. In the case of an ideal gas, the internal 
energy U is given by U = a n T  (a  is a positive constant), whose conservation law 

9={(T,  n ) ;  T z O ,  n >0}. 
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provides the function f as? 

f ( T , n ;  T’, n ‘ )=(nT+n’T‘ ) / (n+n’ ) .  (3.2) 

It is obvious that equation (3.2) satisfies all the properties Dl-D7. In general it can be 
proved that if the internal energy function U has the form U ( n ,  T )  = nlI((T), then the 
temperature-composition function f derived from it has all the properties listed above, 
where lI( is a strictly monotonic increasing continuous function with V(0) = 0. 

In this section, we treat the converse problem, namely, whether we can derive the 
concept of internal energy only from the observed properties Dl-D7 of f ;  in other 
words, whether we can find out an additive ordered structure whose measure function 
can be interpreted as the internal energy. This question is answered affirmatively, and 
the results are summed up by the definitions and theorems below. 

In the following we assume that Y is the set defined by equation (3.1) whose 
elements (T,  n )  are called states, and f is a function defined on Y x Y with properties 
Dl-D7. 

Definition 3.1. A binary operation + in Y is defined as 

( T , n ) + ( T ‘ , n ‘ ) = ( f ( T ,  n ;  T ‘ , n ’ ) , n + n ’ ) .  (3.3) 

It follows from D l  and D2 that the operation + is commutative and associative. 

Definition 3.2. A function U on Y is an internal energy function iff it satisfies the 
conditions 
El .  U( (T ,  n )+(T‘ ,  n‘))= U(T ,  a ) +  U(T‘ ,  n’)  
E2. U(T ,  n )  > U(0,  n )  = 0 (T>O). 

This definition characterises the internal energy by two properties whose physical 
meanings are as follows: E l  is the conservation law and E2 represents the fact that the 
state (T,  n )  ( T  > 0) is obtained by heating the state (0, n ) ,  and no heat can be drawn 
from the state (0, n ) .  

Definition 3.3. We define two relations = and si as 

(i) 

(ii) 

(T,  n )  = (T‘ ,  n’ )eThere  exist two states (0, n l )  and (0,112) such that 

(T,  n ) ~  (T’ ,  n’ )eThere  exists a state (T”, n”) such that 

(0, n1)+(T, n )=(O,  nz )+(T’ ,  n’). 

(T”, n”)+(T, n ) % ( T ’ , n ’ ) .  

If an internal energy function U exists, we have (T,  n)=(T’ ,  n’)+ U(T,  a ) =  
U (  T’ ,  n’), and (T,  n )  s (T’,  n’) + U (  T, n )  s U (  7’, a‘ ) ,  hence the relations = and S are 
considered to make qualitative comparisons with respect to the internal energy. 

The relation = is an equivalence relation. The reflexivity and symmetricity are 
obvious. To prove transitivity we notice the following fact implied by D4 and D3(i): For 
any two states (T,  n )  and (T,  n’) with an equal temperature T, 

(3.4) f (T ,  n ;  T, n‘)  = T 

(T, n ) + (T,  n ’) = (T,  n + n ’). 

or equivalently 

(3.5) 
t According to Bergthorsson (1978), some pioneers in thermodynamics pointed out that a formula of the final 
temperature such as equation (3.2) indicates a conservation law. 
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Suppose that (T,  n )  = (T’,  n’) and (T’,  n’) = (T”, n“). Then, by definition, there exist 
four positive numbers n l ,  n2, n3,  n4 such that 

(0, ni)+(T, n ) = ( G ,  n z ) + ( T ’ ,  n’) 
(O,n3)+(T’,  a ’ )  = (0, n J + ( T ” ,  n”). 

(3.6) 

(3.7) 

Add (0, n3)  to equation (3.6), and (0, n2)  to equation (3.7), then, by equation ( 3 3 ,  we 
have 

(3.8) (0, n l+n3)+(T,  n )  = (0, n2+n3)+(T’ ,  n’ )= (0, n4+n3)+(T”,  n”) 

which implies (T,  n )  = (T”, n ”). 

Theorem 3.1. With the above definitions of + and 6 the system (Y, +, <) is an 
additive ordered structure, and its measure function is faithful and satisfies the 
conditions E l  and E2 in definition 3.2. 

Corollary 3.2. An internal energy function U exists uniquely up to a positive multi- 
plicative constant, and has the form 

U(T,  n )  = n 9 ( T ) ,  (3.9) 
where v’( T )  is a strictly increasing continuous function of T 3 0 with v’(0) = 0. 

Corollary 3.3. By the use of v’, the temperature-composition functionf is written in the 
form 

n n’ 
(3.10) 

where 9-l is the inverse of 9. Conversely, if f has the form (3.10) with a strictly 
increasing continuous function 9 ( T ) ( T  2 0, 9 ( 0 )  = 0), then the properties Dl-D7 are 
all fulfilled. 

Remark. Corollary 3.3 means that equation (3.10) is the general solution of the 
functional equations D1 and D2 with supplementary conditions D3-D7. For a general 
theory of this type of functional equation see AczCl (1966). 

Proof of theorem 3.1. Let us show that the system (9, + , 6 ) satisfies axioms Al-A4. 
Al .  This follows from D1 and D2. 
A2. Part (ii) of A2, the reflexivity of 6 ,  follows from the fact that 

(O,n’ )+(T,n)==(T,n) foranys ta tes (T,n)and(O,n’ )  (3.11) 

Part (iii), the transitivity, can be also easily checked by use of the fact that 

(T,  n )  = (T’,  n’) * (T”, n”) + (T,  n )  = (T”, n”) + (T‘,  n‘). (3.12) 

The proof of (i) is more complicated. From definition 3.3, (T,  n ) 6 ( T f ,  n ’ ) e 3  three 
states (0, nl) ,  (0, n2)  and (T3,  n 3 )  such that 

(3.13) (0, nZ)+(T3, n2)+(T ,  n ) = ( O ,  nl)+(T’,  n‘) 
e 3  two states (0, nl ) ,  (Tz ,  nz) such that 

(T2, nz)  + (T,  f l )  = (0, n 1)  + (T’, a ’ )  (3.14) 
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where ‘ ’ of the second equivalence is checked by adding a state (0, n )  to both sides of 
equation (3.14) and by using equation (3.5). Let us express equation (3.14) by use of the 
function f. We have that (T,  n )  d (T’ ,  n ’ ) e  3 three numbers n l>  0, n2 > 0 and Tz z- 0 
such that 

(3.15) 

By use of the above fact, A2(i) is expressed as follows: For any two states ( T I ,  n l )  and 
( Tz,  nz )  at least one of the two following systems of equations has a solution such that 

nz+n = n 1 + n ’ ,  f (Tz ,  nz; T, n )  =fa n1; T’, E‘). 

x z - 0 ,  y > O , z > O :  

(i) y + n z = z + n l  FII (ii) f(x, y ;  Tz, nz) =fa 2; T1, n i l  
(i) y + n l = z + n z  F21 (4 f(x, Y ;  Ti ,  ai) =f(o, 2; Tz, nz). 

These will be checked for two cases (a) n1 z- nz and TI  2 Tz, and (b) n l>  nz and Ti < Tz. 
The other cases are reduced to these by exchanging the subscripts 1 and 2. 
Case (a ) .  This is subdivided into the three cases (i) T I  = Tz ,  n1= n2, (ii) T1 = Tz ,  
n 1 > n z ,  and (iii) T l >  Tz ,  n 1 2 n ~ .  In case (i), both F1 and F2 hold for x = O  and 
y = z > O .  In case (ii) F1 holds if we put z = a > O ,  y = n z - n l + a  and x =  
f(0, a ;  T1 ,  n l  -n2)  with an arbitrary positive number a, as follows: 

f(x, y ;  Tz, nz)=f(f(O,  a ;  Ti, n i - 4 ,  nz-ni+a; Ti, nz) 

=f(o, a ; f ( T i ,  n i - n z ,  Ti, 1121, ai)  (*.*D2) 

=f(O, a;  Ti,  H I )  (*.*(3.4)). 

In case (iii), since 

O < f ( O ,  n ;  Ti,  a i )<  T1 for any n > 0 (*:D4) 

and 

f(0, n ; Ti,  nil  + Ti(n + 0) (*..D7), 

(3.16) 

On the other hand, it follows from equation (3.4) and D3  and D5 that the value of 
f(x, n2 - n1 + a  ; T2,nz) increases continuously from TZ to infinity as x does from Tz to 
infinity. Therefore for some value x = /3( > Tz)  we have the equality 

(3.17) f(P, nz-ni+a; Tz, nz)=f(O, a ;  Ti,  ai) 
which implies that F1 holds for x = p, y = n2 - n l  + a and z = a. 
Case (b ) .  If 3 a positive number a such that 

Ti<f(O, ni-nz+a; Tz, ad ,  (3.18) 

then from the same consideration as in the case (a iii) it follows that F2 holds for z = a, 
y = n l  - nz + a and some value x = /3(> Ti).  

If inequality (3.18) does not hold for any a > O  we have 

f (O,n1 - nz; Tz ,  nz) = lim f ( 0 ,  n l  - nz + q ; Tz ,  nz )  =s Tl,  (3.19) 
a + + O  
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where we have used D3(i). Since f ( x ,  n l  - n z ;  Tz, n2)  is a continuous function of x and 
tends to infinity as x +CO,  inequality (3.19) implies that there exists a non-negative 
number p such that 

(3.20) f(P, n i -nz ;  Tz, nz)= Ti. 
Therefore, for any a > 0 we have 

f ( f ( o , a ; P , n l - n z ) , n l - n z + a ;  T 2 , n z )  

= f ( o ,  a; f (P ,  n i - n z ;  T2, nz), ai) (*.‘D2) 

= f ( O ,  (Y ;  Ti,  nz) (.:(3.20)) 

which implies that x = f ( P ,  n l  - n z ;  0,  a ) ,  y = n l  - nz + a, t = a make a solution of F1. 
A3. This follows from equation (3.14). 
Null elements. In order to obtain the set of all null elements of Y we make two 
preparations. First we show that 

(T,  n)+(T’ ,  n ’ )=(T,  n )+(T” ,n”)+(T’ ,n ‘ )=(T” ,  a”) .  (3.21) 

Suppose that the left-hand side of the above implication holds. Then we have 

f (T ,  n ;  T’, n’) = f (T ,  n ;  T”, n”), (3.22) 

and 

n+n’=n+n’’ ,  (3.23) 

which leads to n‘ = n” and 

f ( T ,  n ;  T’, n’) = f ( T ,  n ;  TIf, a’ ) .  (3.24) 

By applying D3(ii) to (3.24), we have T’ = T”. 
Next we show that 

(T ,n ) - (T ’ ,  n ’ )w(T ,n )=(T’ ,  n f ) .  (3.25) 

Suppose (T,  n )  - (T’,  n’), which, by definition 2.l(i), means that (T’,  n’) s (T,  n )  and 
(T,  n ) S ( T ’ ,  n f ) .  Then 3 four states (0, nl) ,  (Tz ,  n 2 ) ,  (0, n 3 )  and (T4, n4) such that 

(3.26) 

(3.27) 

which, by (3.21), reduces to 

(0, n3) + (0, n i l  = (Tz, n2) + (T4, n4). (3.29) 

Then 

f (T2,  nz; T4, n4) = 0 (3.30) 

which implies that the right-hand side of D4 does not hold, consequently T2= To. 
Hence by applying (3.4) to (3.30) we have Tz = T4 = 0. Thus (3.26) implies (T,  n )  = 
(T’,  n’). The converse is obvious. 
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A null element (To, no) is, then, characterised by the condition 

(T, n )  i- (TO, no) = (T,  n )  V states (T,  n ) .  (3.31) 

By (3.21), condition (3.31) implies To=O. Conversely if To=O then (3.31) is true. 
Thus a state (T,  n )  is a null element if and only if T = 0. 
A4. By definition 2.l(ii) and (3.25) we have 

(T’,  n’) 6 (T, n ) e ( T ’ ,  n’) 

-3 two states (TI, n l ) (T1  >0) and (0, no)  such that 

(T,  n )  and (T’,  n’) + (T,  n )  (3.32) 

(T l ,nd+(T’ ,  n’)=(O, no )+(T ,n )  (3.33) 

where ’e’ of the second equivalence follows from G7 in the Appendix. Furthermore, 
from equation (3.5) we obtain for any integer N > 0 

+ ( T  n ) N (  T, n ) = (T,  Nn ). 
(T,  n+ 

(3.34) 

Thus, in order to check A4, it suffices to show that given two states (T,  n ) ( T  > 0) and 
(TI, n‘),  the following system of equations F3 has a solution x > 0, y > 0 and t > 0 for 
sufficiently large integers N > 0: 

(i) y + n ‘ = r + N n  F31 (ii) f(x, y ;  T’, n’) = f (0 ,  2 ;  T, Nn).  

In the case T TI, for any integer N > n ’ / n  3 a positive number p 2 T such that 

f ( p , N n - n ’ ;  T ’ , n ’ ) = T ,  (3.35) 

because by D3, D5 and (3.4) the value of f(x, Nn - n’; T’, n’) increases continuously 
from T’ to infinity as x does from T’ to infinity. Then for any a > 0 we have 

f ( f ( 0 ,  a ;  p, Nn -n ‘ ) ,  Nn - n ’ + a ;  T’, n’) 

= f ( O ,  a ;  f ( P ,  Nn - n‘; T‘ ,  n‘) ,  N n )  

= f ( 0 ,  a ; T, N n )  (3.36) 

which implies that F3 holds for x = f ( O ,  a ;  p, Nn -n’) ,  y = Nn - n‘+a and z = a .  
Moreover, the positivity of f ( 0 ,  a ; p, Nn - n‘) follows from D4 and p > 0. 

In the case T < TI, take a positive number Po such that T > Po > 0, then it follows 
from D6 that 3 an integer No > n ’ / n  such that 

f ( p o ,  Nn - n’; T’, n’) < T V N  > No. (3.37) 

Therefore, by the same reason as used for the derivation of (3.35), for each integer 
N > No 3 p > P o  such that 

(3.38) 

Consequently, in the same way as in the above case, we have a solution of F3 as 
x = f ( O , a ; p , N n - n ’ ) ,  y = N n - n ’ + a  and x = a  for any N > N o ,  where a is an 
arbitrary positive constant. The positivity of f ( 0 ,  a ; p, Nn .- n )  also follows from D4 
and p > O .  
Measure function. Since all the required axioms have been checked above, the system 
(9, +, S )  is an additive ordered structure. Theorem 2.1, then, guarantees the exis- 
tence and the uniqueness (up to a positive multiplicative constant) of the measure 

f ( P ,  Nn -n’ ;  T’, n’) = T. 
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function U of (9, +, s ), namely 

(i) 

(ii) 

U((T,  n ) + ( T ’ ,  n’))= U(T,  n ) +  U(T’ ,  n’) 

(T’,  n ‘ ) s ( T ,  n ) j U ( T ’ ,  n ’ ) s  U(T,  n )  

(3.39) 

(3.40) 

(iii) T = Ow U(T ,  n )  = 0. (3.41) 

From (3.33), (3.39) and (3.41) we have 

(T‘ ,n’ )<(T,n)+U(T’ ,n’ )<U(T,n) .  (3.42) 

Therefore U is faithful (see Remark in P 2), and the converse of (3.40) is also true. 
From those properties of U it is obvious that U satisfies the condiitions E l  and E2 in 
definition 3.2 and is the internal energy function. This concludes the proof. 

Proof of corollaries 3.2 ana’ 3.3. First we show the facts 

(i) T ’ < T + U ( T , n ) < U ( T ’ , n )  (3.43) 

(ii) n l<n2and  T # O + U ( T , n l ) <  U ( T , n z )  (3.44) 

(iii) U(T ,  n +n’)  = U(T ,  n ) +  U(T ,  n‘). (3.45) 

In order to prove (3.43), it is sufficient to show that 

T’< T+ (T’,  n )  < (T,  n ) .  (3.46) 

From D3(ii), we have the inequalities for T‘< T 

f ( 0 , z ;  T’, Y ) < f ( O ,  2 ;  T, Y ) < f ( X ,  2 ;  T, Y ) .  (3.47) 

Hence, if T’ < T, then the equation 

f ( 0 ,  2 ;  T’, y ) = f ( x ,  2 ;  T, Y )  (3.48) 

does not hold for any x 2 0, y > 0 and z > 0, which gives (3.46). Fact (3.45) follows from 
(3.39) and (3.5). 

By (3.43) and (3.41) 

O <  T+O< U ( T ,  n ) .  (3.49) 

By putting n = n1 and n’* n2- nl  in (3.45) and by using (3.49), we obtain (3.44). 

fixed T > 0. Hence, for T > 0 it can be written in the form 
From (3.44) and ( 3 . 4 9 ,  U is an additive increasing function of n for an arbitrary 

U(T ,  n ) = n v ’ ( T )  (3.50) 

where v’ is a function of T >  0. Put v’(0) = 0, then (3.50) holds for T 2 0, because 
U(0,  n )  = 0. Substitution of (3.50) into (3.43) yields the fact that V(T) is a strictly 
increasing function of T 3 0 and that its inverse 9-l exists. By substituting (3.50) into 
E l  of definition (3.2) and by using (3.3), we obtain the following relationship between f 
and V: 

( n + n ’ ) v ’ ( f ( T , n ;  T’,n‘))=nV(T)+n’Vr(T‘) (3.51) 

which implies (3.10). Moreover, (3.51) shows that the range of v’is given by the interval 
[0, SUPT V(T)). Therefore, V is continuous, since a monotonic increasing function 
whose range is an interval cannot have any discontinuous point. 
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The uniqueness of the internal energy function is attributed to that of the measure 
function, since E l  and E2 in definition (3.2) imply (3.39), (3.40) and (3.41). The latter 
half of corollary (3.3) is also straightforwardly checked. 

4. Concluding remarks 

The discussion in this paper is limited to gaseous systems of one component, and it 
remains to extend it to deal with the thermal contact and mixing of various kinds of 
materials including chemical reactions. However, the methods used in § §  2 and 3 are 
not restricted to thermodynamics, as can be seen from the circumstance that the theory 
of measurement has been developed mainly in non-physical fields (Krantz et a1 1971 
and Pfanzagl 1971). It is interesting to apply the methods in a developing field of 
physics such as chaos physics ( R u d e  1978), in which the formalism of the final 
temperature or that of the additive ordered structure might be useful to construct a 
measure for chaos (Oono et a1 1980). 
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Appendix: Proof of theorem 2.1 

The proof of this theorem has its essential part in common with that of similar 
statements listed in Krantz (1971). But there is not the same statement in thenr, 50 in 
this Appendix we give the proof in order that the paper be self-contained. 

As a preparation for the proof, we present some facts easily derived from the 
axioms. a, b, c , .  . . and a', b' ,  . . . are elements in 9, and n, m, n ' ,  . . . are positive 
integers. 
G1. For any a and b, one and only one of the relations a < b, a - b, and b < a is true, 
and a s b e a  < b or a - b. 
G2. The relation - is an equivalence relation, that is (i) a - a ,  (ii) a - b 3 b -a, and 
(iii) a - b and b - c 3 a - c. 
G3. a - b + a + c - b + c  
G4. a < 6, a - a' and b - b ' 3  a '<  b' 
G5. a s b a n d c s d + a + c s b + d  
G6. a & b + n a s n b  
G7. a & O j b < a + b  
G8. a & O j a + b & O  
G9. ai+Z$+na&O 
G10. m a s n a  a n d a @ O J m S n  

Proof, G1-G6 are easy consequences of the definitions and axioms A l ,  A2 and A3. 
The others are derived from these and A4 by the method of reductio ad absurdum. 
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G7. Assume a & 0 and a + b S h, which is, by G1, the negation of b < a + b. Then, 
by A4, 3 a positive integer N such that 

b < n a  V n > N  (A.1) 

and, applying G6 to a + b % b, we have 

nu + n b  s nb. (A.2) 

From (A-1), (A.2) and G5, it follows that 

( n  + 1)b % nb V n > N ,  (A.3) 
which contradicts A4 if b &  0. This thus implies b E 0. However, h E 0 implies nb = 
( n  - 1)b + b - ( n  - 1)b  - .  . . - b, hence 

nu -nu + b -nu  + n b  6 nb - b. (A.4) 

Thus we have nu S b, which contradicts (A.l), where we have used G2, G3 and G4. 
G8. Let us assume a & 0 and a + 1. E 0, then by G7, 

a + b < ( a  + b ) + a  -a .  (A.5) 
On the other hand, by G7 and G1 we obtain 

a s a + b .  (A.6) 
The combination of (A.5) and (A.6) leads to a 7L a, which contradicts G2(i). 

G9. This is a direct consequence of G8. 
G10. Suppose m > n, ma 5 nu and a& 0, then by G7 and G9, we have nu < 

nu + ( m  - n ) a  = ma contradicting ma s nu. 

Proof of theorem 2.1. If Y = 0, the theorem is trivial. Henceforth we assume Y # 0. 
( 1 )  Uniqueness. Let M and M’ be two mappings having the properties B1, B2 and B3. 
Let us fix an element e &  0 and take an arbitrary element a e  0. Since M ( a ) >  0 and 
M ( e )  > 0 by B3, we can take two sequences of rational numbers { P k }  and {qk} such that 

o < P k  < M b ) / M ( e )  <qkr 

P k  tM(a ) l M ( e )  and qkJM(a) lM(e )  ( k  + 00). 

Putting p k  = mk/nk and qk = S k / r k ,  where mk, i t k ,  Sk and rk are positive integers, we have 
the inequalities 

(A.7) 

(A.8) 

mkrkM(e) < nkrkM(a) < sknkM(e). 

M(mkrke) < Minkrka) < M(sknke). 

By applying B1 to (A.7), 

Then, by the contraposition of B2 we obtain 

mkrke < nkrka < sknke. 

By using B2 for M‘ and (A.9), 

M‘imkrke) sM‘(nkrka)  <M’(sknke). 

Then by B1 and B3 of M’ 

mk/nk s M ’ ( a ) / M ’ ( e )  s s k / r k ,  

(A.9) 

(A. 10) 

(A. 11) 
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which upon allowing k + KJ leads to 

(A.12) 

M ' ( a )  = ( M ' ( e ) / M ( e ) ) M ( a ) .  (A.13) 

This relation holds also for a E 8 because M ' ( a )  = M ( a )  = 0 for a E 8. 
(2) Existence. Let us fix an element e g 8, then, by A4, for any a and any m there exists n 
such that wia s ne. We write N ( m ,  a )  as the minimum of such integers n. If a &  8 then, 
by A4, for any large integer K > 0 3 an integer L > 0 such that Ke < ma for all m > L, 
which implies N(m,  a )  > K for m > L. Therefore N(m,  a )  + w ( m  + CO). Consequently, 
for sufficiently large m, N(m,  a) 3 2,  and we have 

(A.14) 

It is noted that N ( m ,  a) -  1 is the maximum of integers n such that ne < ma, (cf G1). 

(A. 15) 

For sufficiently large m' (such that N ( m ' ,  a) 3 2 )  we can exchange m and m' in (A.15): 

(A.16) 

( N ( m ,  a )  - 1)e < ma 6 N(m,  a)e. 

By applying G6 to (A.14), we obtain for any m' 

m'(N(m,  a )  - 1)e s m'ma S m'N(m, a)e. 

m(N(m' ,  a )  - l ) e  s mm'a 6 mN(m',  a)e. 

By applying A2(iii) to (A.15) and (A.16), we obtain 

m'(N(m,  a )  - 1)e 6 mN(m',  a)e (A.17) 

and 

m(N(m' ,  a )  - l ) e  s m'N(m, a)e .  (A.18) 

Then by using G10, we have 

m'(N(m,  a )  - 1) s mN(m',  a )  (A.19) 

and 

m(N(m' ,  a )  - 1) s m'N(m, U )  (A.20) 

which leads to 

N ( m , a )  N ( m ' , n )  1 I. 
l m  m' l m m  

<-+---;. _____ - 

Therefore (N(m,  a ) / m }  is a Cauchy sequence, and so the limit N(m,  a ) / m ( m  +moo) 
exists. If a E 8 then, by G7 and G4, ma - a < a  + e  -e, that is ma <e.  Thus N(m,  a )  = 
1. Consequently, the limit also exists and is equal to zero. Now we can define a mapping 
M as follows: 

M ( a ) =  lim N(m,  a ) /m .  
m-+m 

(A.21) 

In the following, we show that M has the required properties in the order B2, B3, 

B2. If a i b, then by G6 we have 
€31. 

ma s mb 6 N(m,  b)e  (A.22) 
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for any m. Then, by the definition of N ( m ,  a )  we obtain 

N(m,  a )  G N ( m ,  b ) .  (A.23) 

Consequently M ( a )  s M ( b ) .  

have ke Q moka for any integer k > 0. This implies N(mok,  a )  2 k .  Therefore 
B3. If a E? 8 then, by A4, 3 an integer mo > 0 such that e < moa, hence by G6 we 

(A.24) - 1  N(mok,  a ) / m o k  3 mo . 
By allowing k + 00, we have 

-1 M ( a ) a m o  > O .  (A.25) 

If a E 8 then, as shown before, N(m,  a )  1= 1 for any m. Therefore M ( a )  = 0. 
B1. If a g  8 and bE? 8, then for sufficiently large m, 

( N ( m ,  U )  - l )e  < ma s N ( m ,  a)e, 

( N ( m ,  b )  - 1)e < mb s N ( m ,  b)e .  

(A.26) 

(A.27) 

By applying G5 to (A.26) and (A.27), we obtain 

( N ( m ,  a )  + N ( m ,  b )  -2)e S m(a + b )  S ( N ( m ,  a )  + N ( m ,  b))e. (A.28) 

Then, by the definition of N ( m ,  a + b ) ,  we have 

N ( m ,  a + b )  s N(m,  U )  + N ( m ,  b )  

N ( m ,  a ) + N ( m ,  b ) - 2 ~ N ( m ,  a + b ) .  
and 

(A.29) 

(A.30) 

By multiplying both sides of (A.29) and (A.30) by m-' and taking the limit m + 00, we 
obtain 

(A.3 1) 

(A.32) 

In the case a E 8, it follows from B3 that M ( a )  = 0, and from B2 and the relation 

M ( a  + b )  =G M ( a )  + M ( b )  S M ( a  + b) .  

M ( a  + b )  = M ( a )  + M ( b ) .  
Therefore 

a + b - b that M ( a  + b )  = M ( b ) .  Thus (A.32) holds for any a and b. 
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